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ABSTRACT

The theory of homogeneous condensation is reviewed and

equations describing this process are presented. Numerical

computer solutions to transient problems in nucleation (relax-

ation to steady state) are presented and compared to a prior

computation. The present method of computation is much faster

than that used previously.
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Introduction

This report deals mainly with theory describing the initial stage

of condensation of a supersaturated vapor to the liquid phase. There

are two types of condensation: heterogeneous and homogeneous. Hetero-

geneous condensation occurs when the condensation centers, or nuclei,

are composed of material other than that of the vapor of interest.

Examples of such nuclei are ions, dust particles, and droplets of an

easily condensible impurity vapor that may be present. This type of

condensation is in general quite complex and little is known about it

(Ref. 1). If the vapor is sufficiently pure and free of foreign particles,

then a spontaneous condensation, or nucleation, may occur. The growth

of these self-nuclei leads to homogeneous condensation. This process

tends to become important if the supersaturation condition arises rapid-

ly. It is the process of homogeneous nucleation that is amenable (at

least to a certain extent) to mathematical modeling and is discussed

here. The model equations are well known and are reviewed in the first

part of the report. In a second part, some numerical solutions to

problems dealing with a nonsteady state are discussed.

I. Review of Condensation Theory

Thermodynamics and Droplet Equilibrium

Consider a system at given pressure p and temperature T. From

thermodynamics (Refs. 1-3), the system is in equilibrium when the Gibbs

free energy G(p,T,c.) = U + pV - TS is a minimum. Mole fraction of

phase i is ci, molar quantities are internal energy U, volume V and

entropy S. The chemical potential of phase i is i with G c. Pc

i i
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The chemical potential can be regarded as the partial Gibbs energy of

the phase. The equilibrium condition is

dG = Vdp - SdT + E 4~ dc. = 0.
i

For a two phase system, liquid (Q) and vapor (v),

dc + dc = 0,
v

Vdp - SdT+ C dc + p dc = 0.

For constant p and T, equilibrium requires pv = P. Consider an iso-

thermal reversible process. V = E c. V. and di. = V. dp from the
1

second form of G.

d(p - v ) = (V - V )dp - Vvdp

since V >> V . For a perfect gas, Vv = RT/p and

P - Pv = RT tn (ps/p)

where Ps(T) is the saturation vapor pressure for a flat surface. This

relation for the deviation of the chemical potentials from the equili-

brium condition is used to develop an expression for the energy of

droplet formation. For a system of N molecules of which g form a liquid

drop, the free energy is

2
0g = (N - g) v + go + 47 ra

where 0i('j ) is the free energy per particle, r the drop radius, and

c(T) the surface tension (energy). The free energy of formation

Ag = g - 0o = g(ot - 0v) + 4T r2o.

4 3
If m is the molecular mass and p the liquid density, mg = 3 r p ;

also, OZ - Ov = kT tn (ps/p). Substituting,
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AO (p,T,g) = gkTn (ps/p) + (4)/3(3 mg/p) 2/3 .

Droplet equilibrium requires (a ) = 0, or
og g

kT tn (p/p) =2np r

This formula defines an unstable condition since the droplet free energy

is maximum, not minimum. For a drop of given radius r, the above rela-

tion gives the saturation pressure p of the drop. (As r - mc, p - ps.)

For given pressure p > ps, the vapor is undersaturated with respect to

a drop of radius smaller than r (hence.such a drop will evaporate) and

supersaturated with respect to a drop of radius larger than r (such a

drop will tend to grow). If p ps, all drops will tend to evaporate,

that is, the vapor is undersaturated with respect to drops of all sizes.

In a supersaturated vapor (p > ps), drops of size r are the critical

sized nuclei that initiate the process of homogeneous condensation.

The superscript "*" will be used to denote this critical size.

Quasi-equilibrium Cluster Distribution

Assuming a finite probability for a vapor molecule sticking to

another molecule or molecular cluster upon collision, thermal fluctua-

tions in a vapor will lead to droplet formation. Classical thermo-

dynamics or statistical mechanics gives the following result for the

quasi-equilibrium distribution of clusters or droplets (Refs. 1, 2,

4-12):

N = C exp (- Ag /kT).

This distribution, along with a binary collision assumption, leads to

the classical liquid drop theory of nucleation. The Boltzmann-like

Strict thermodynamic equilibrium occurs only for p = ps.

JPL Technical Memorandum 33-666 3



distribution represents a balance between the effect of thermal col-

lisions and the tendency for droplets to vaporize - it holds when the

vapor is undersaturated with respect to the drops. It cannot be con-

sidered valid if p > ps and r > r (see Ref. 2). Initially held was

the view that the proportionality factor C is nearly equal to the vapor

number density (Refs. 1,2). In Refs. 4 and 13 it is suggested that

taking proper account of the cluster partial pressure results in a

modification of the factor to the saturation number density (this is

equivalent to replacing g by (g-l) in the bulk energy change term in

A g). Controversy over proper treatment of rotational and translational

partition functions of a cluster (Refs. 1, 5-12) has been sustained

over the past ten years. Extremely large differences in C estimates

(as large as 17 orders of magnitude, Ref. 5) resulted. The latest ref-

erences (Refs. 9-12) seem to have resolved the problem; the factor C

is ascertained to be roughly equal to the liquid number density.

It should be noted that the classical thermodynamic representation

of clusters as droplets can only be valid for g >>> 1. Unfortunately,

for typical conditions, g 4 100. On the microscale relevant to the

nucleation problem, a detailed quantum mechanical description of the

interaction between molecules of a cluster is needed in order to cor-

rectly calculate the energy of formation, heat capacity, etc. This is

an impossibly difficult approach. The extension of the classical liquid

drop theory to small clusters can be justified, however, on the basis of

the agreement of the resulting steady state nucleation rates with experi-

ment (Refs. 14-17). This agreement requires that the original liquid
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drop theory (C ; vapor number density) be modified by choosing a

(smaller) surface tension 'to account for the effect of surface curva-

ture' (Refs. 14, 15, 18) or by taking C t liquid number density (Ref.

16). Either modification will give roughly the same result; the latter

seems to have a better theoretical justification (above paragraph).

Further discussion on the extension of drop theory can be found in

Ref. 1. Recently, there have been efforts to study the behavior of

small clusters by computer techniques. Monte Carlo calculations using

a lattice gas (Ref. 19) for g s 1000 have shown that the surface energy

2/3
(area) varies as the macroscopic dependence g unless the droplet size

is much smaller than critical or the nucleation rate is very high.

Several references deal with atoms interacting classically through the

Lennard-Jones 12-6 potential. Computer calculation of cluster configura-

tional integrals that are related to the internal cluster partition

functions yields good agreement between the resulting (discrete) satura-

tion pressures for 2 ! g ! 14 and the thermodynamic expression for

droplet equilibrium (Ref. 20). *This fortuitous result furnishes further

credence for the use of liquid drop theory; however, there is some doubt

as to the agreement that may be expected for larger g (Ref. 20). In

Ref. 21 the Monte Carlo technique is applied to cluster integrals to

compute the Helmholtz free energy for 13 5 g : 100 and 0 T ! 1000K

using argon potential constants. Essentially the same problem (with

15 ' g : 100, T 750K) is approached in Ref. 22 by simulation of the

cluster molecular dynamics; presented are graphs of the Gibbs free energy

and other thermodynamic quantities. Similar efforts in the near future

may lead to a definitive validation of liquid drop theory or to a more
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realistic model for the free energy and cluster distribution of smaller

clusters; for the present, the liquid drop model is deemed adequate.

Nucleation Equations

The droplet formation or nucleation equations are formed assuming

that only binary collisions between a droplet and a vapor molecule

(monomer) are important, i.e., the droplet size changes by addition

or subtraction of a single molecule at a time. This means that the

vapor must be sufficiently tenuous and that the concentration of dimers

and higher order polymer clusters must be much smaller than the monomer

concentration. The sticking ability of a molecule upon collision with

a droplet is characterized by a condensation accommodation coefficient

ac. The free molecular flow particle flux is 0 = p/V2rmkT and the drop

2 2/3 1/3 2 / 3

area is 4i-r r = g Ac where A = (4n) (3m/p ) is a characteristic

2/3
molecular area. The droplet growth collision frequency is thus vg = g

v ; v a $ A . The evaporation rate v (e) is given by the principle
c c c c g

of detailed balancing using the quasi-equilibrium cluster distribution:

S(e) = N = exp Agg Algl
g g-1iNg quasi-equil. eg-1 kT g-

The rate of change of the concentration of droplet size g is given by

d = N + (e) (e)

dt g-1 g- + g+l N (g ge)) Ng

A nondimensional time variable is defined by dO a vc(t)dt. (Variables

p and T are known functions of time.)

Then

dN

d@9= Cg- f g_+ C f+ - (C + C g) fd6 JP Technicalg - Memorandumg + 33-666 f
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where f = N exp (A g/kT) and C g 2/3 exp (- g /kT).g g g g g

This can be written as

dN
- = Ig-l - I I g (f - f g+l) .

de g- g g g g g+

I is the net flux of droplets making the transition g - (g+l). The

nucleation rate is determined by I1*. Let y denote the total number
g g

of droplets of size greater than g,

y = E N,
g g'=g+l

dy
then I = dg The nucleation rate is thus found by solving for the

g d9

variable set N or yg and using the equation of droplet equilibrium

to calculate g .

Since g >> 1 (at least for cluster sizes which correspond to

physically realistic situations in gases), the discrete variable g

may be considered continuous to a good approximation (see Ref. 23).

Correspondingly, the differences indicated in the above equations

can be considered as differentials:

= . and I = -

or

N N

ae ag ag kT ag

3 2/3
It is convenient to define a new 'area' variable . Also

let N g/3 N and FE -g - n g. Then
g kT 3

N ,quasi-equil. = C exp (- F) ,

JPL Technical Memorandum 33-666 7



y= N dg N d I = ,

= + N F -

and

2
by F = y
ae ,6 a t 52

The last equation is a one dimensional convection-diffusion equation with

convection velocity - 6 . The presentation of the liquid drop nuclea-

tion theory in terms of difference and/or differential equations is

now complete. The steady state solution or long time behavior of the

differential equations is given next. The development will parallel

that given in Ref. 2.

In the limit -- 0, I = () ,

and N =I exp (- F) exp (F) d

In a supersaturated vapor, F has a maximum at S = 5 . Let t t n (ps/p)

and w(T) =  A /kT, then

2 3 J (3/2 ) 2

912 2

Let d = A(1-) 2 , * 2 2 (1-A) 2 , x = - (1-3A)

8w 3 CX4w (1A)2

Expanding F in a Taylor series about * ,

* * 2
F = F - ) + higher order terms.
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Using the method of steepest descent, this expression is substituted

in the above integral giving

N ~ L/rA exp (F - F) erf*e ( (c-)

As , then ,quasi-equil.and erfc

.. C = -7 exp (F) .

Finally, for steady state,

I = C /w(l- 3 A)/nT exp - k)

and N 1 (N ) erfe)
g (Ng,quasi-equil.

Typically,A A «<< 1 and the steady state value of I is approximately

7T47 times the critical droplet concentration (times the character-

istic frequency Vc if reference is made to dimensional t rather than o).

Also note that the critical concentration in steady state is half the

quasi-equilibrium value. For >> , the expression for N is only

qualitatively correct.

A gas that is immiscible with or has no affinity for the liquid

phase in consideration will be called an inert gas. It is not ex-

pected that the inclusion of an inert gas in the system will have any

effect on nucleation (Refs. 4, 18); this is confirmed by experiment

(Refs. 14, 16, 17). Of course, variable p will then be identified

with the partial pressure of the vapor phase.

JPL Technical Memorandum 33-666 9



Equations for Droplet Growth and Energy Balance

Once a critical sized nucleus has formed, it will grow to form

a condensation drop. Initially, this is a one-way process and tends

to be fast. As each molecule adds its mass to the drop, it also brings

its latent heat of evaporation, a quantity much larger than kT. The

drop quickly increases in temperature with consequent increase in its

vapor pressure and evaporation again becomes important. An inert gas

present can act as a heat sink for the latent heat (through thermal

relaxation by collisions with drops) and thus can increase the conden-

sation rate after nucleation (Ref. 18). Equations describing these

processes in the free molecular flow limit are given in this section

(see also Ref. 1). It is assumed that there is no slip of the drop

in the flow.

Subscript "d" denotes drop quantities, subscript "p" the inert

parent or carrier gas and subscript "e" an exiting or evaporating

molecule. The heat flux to the drop is

q = 0c [nkT (2 - n kTd
d tc Iv m ve d am

kTInp(n kTd ( 2kTd)+ atp [nkT 2kT - n
tp p nm pe d nm

L P

where Ctc and Ctp are thermal accommodation coefficients and n denotes

number density. Since the parent gas is inert, n pe= n /Td . From

droplet equilibrium

n kT = p = p(Td) exp Td
ve dJPL Technical Memorandum 33-
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The drop energy equation is (for constant , r continuous)

q = P AH - + I rC dTd

d Pt dt 3 t, dt

where AH is the energy change per unit added mass and Ct is the liquid

specific heat at constant pressure. The drop growth rate is

dr 1 /2kT d\ 1
Pd dt 2 cm n v (m ve a

To calculate AH, consider the three step process of (1) compressing

the vapor to the drop saturation pressure (T constant), (2) change of

phase with latent heat L and (3) heating from T to Td.

AH = - tnn (vT + 2r (T) - L (T) + C (Td-T).
mp pr d

If the heating is done first on the vapor phase before the compres-

sion and phase change, then

[ kTd Ps(Td) 2 (Td
AH = C (T -T) + _ n + - L(Tdv d m pr

where the vapor constant pressure specific heat C = 5k for a mona-
v 2m

tomic vapor. It is to be noted that for a perfect gas and neglecting

the liquid specific volume compared to that of the vapor (Ref. 3),

dL
dT Cv "C

kT2 d.np

and L P -s
m dT

The first equation implies C (Td-T) - L(T) Cv (Td-T) - L(Td). The

second is known as Clapeyron's relation for a vapor. The brackets

JPL Technical Memorandum 33-666



in each expression for AH enclose terms giving the work of compres-

sion. This compression work is null for a drop of critical size.

Further, each individual term in a bracket decreases in magnitude

with increasing time (increasing drop size and decreasing super-

saturation) and tend to be small compared to the latent heat (mL >> kTd).

An approximate expression for the energy change is

AH - Ct (Td-T) - L(T).

The differential equations for drop size r and temperature Td depend

on the parameters T, nv, and n.

Formulas giving the effect of droplet slip relative to the gas

are found in Ref. 1; consideration of this in nozzles or for other

dynamic systems is not likely to be necessary. Discussions and calcu-

lations relating to a finite Knudsen number are given in Refs. 1 and

24; again, this is not likely to be important in nozzles (Refs. 15, 16).

Accommodation coefficients are listed in Refs. 1 and 25. A parametric

study on the effects of heat transfer on drop growth is conducted in

Ref. 26. Both the nucleation rate and the growth rate are important

to the condensation problem.(Refs. 18, 26).

Nozzle Flows

This review of condensation theory topics will conclude by giving

attention to a particular situation where condensation may be important -

that of flow in a nozzle. The flow is taken to be one dimensional and

steady. The axial coordinate of the nozzle x, velocity is u(x) and

d d
-- = u(x) - . Since a relatively small amount of the gas flow changes

phase during condensation, the effects of changes of composition (on

2 JPL Technical Memorandum 33-666



specific heats, effective gas constant, etc.) will be neglected except

for the volume heat addition that results from release of the latent

heat. Let Q(x) be the total heat addition, A(x) the prescribed nozzle

area and p the gas mixture density. Then

puA = w = constant,

pudu + dp = 0,

dQ = C dT + udu,
p

p = pRT.

Here C is the mixture constant pressure specific heat and R the mixture
p

effective gas constant. Assuming perfect gas components with specific

heat ratios Yi and mole fractions c.,

R = k/Z m.c.
i 1

and C = REc.y./(y -1).
p .1

The specific heat ratio for the mixture is y = C /(C -R). The partial

vapor pressure is proportional to the total pressure, pv =C 
p . The

speed of sound a = /yR and the Mach number M = u/a. Entropy S(x) =

fdQ(x)/T(x). Solving in terms of p and T:

p = p/RT, u = wRT/pA,

S = C pn(T/T o) - Rn(p/po),

Q = C(T-T o ) + (wR/A) T /p 2 .

p o 2

Subscript "o" refers to stagnation or reservoir conditions (A - c). Let

1 exp (S/R) and a2 1 + Q/C T . For simplicity, it is assumed that
2 po

condensation occurs downstream of the nozzle throat and that the subsonic

flow is isentropic (c = 12 = 1). Using subscript "t" to denote throat

(sonic) conditions,

JPL Technical Memorandum 33-666 13



Y+l

w = At f(2 p T

Tt = To 2 and Pt =  o 0 -1

Downstream,

T/To = a( + y 1 M2)

Y
p/p + YCl 2 / 1 / 1

where M is given by

1t 21

Given A, a, and (2, all other quantities are readily found. The flow

is not choked by the heat addition if

2(y-1)

2 A) > 1 .
1 t

(Heat addition during the subsonic portion of the flow changes the

location of the sonic point and alters the Mach number-area relation-

ship by A t -- As, a91 -4 C1 /a ls and ca - '2/L 2s where "s" denotes the

sonic point.)

Neglecting the small energy change due to the nucleation process,

the equation for heat addition is

dQ
pu dx = - N qd(g) r2(g)

(all condensation drops)

Once N is specified, the formulation of the nozzle flow problem is

complete. The growth rate equation may be written in the dimensionless

form

14 JPL Technical Memorandum 33-666



dr c i mkTd
d- = F(x,r )  c _ n mT - n .
dx pu v \2 ve 2-nye /\_II "

Let x denote the saturation (p = ps) point or starting point (which-

ever is furthest downstream) and xn a particular nucleation point,

x x < x. The nonlinear growth equation is to be integrated to give
s n

r = (x,x ) where r(x ,X ) r (x ). Only those values of xn such that
n nn n

r(x,xn) r (x) can give growing drops. For given x, an interval Ax

n n n

endpoint of the interval where gn is an integer and g - gn I

in Axn, If N is the number of condensation nuclei formed at xn in Axn

Ng (x) = N (x n ) 6 [g - g (X,X )]
x

n

where 6 is the Dirac delta function.. Also,

!d = A A(x) N 2/3
dx - w n N (xn) n qd n

x
n

The rate of nuclei formation is

d - * 0* N *dg
d y ( g ,t) = Vc I - N *dtc g dt

therefore

N (xn) = - * - N * dg dxn x u g dx
n

The integer function gn, used as a device to implicity indicate the

growth transformation x - x, will now be considered in its continuousn

form g (x,xn) or r (x,xn). Then using the Heaviside step function H

and letting Ax - dx ,n n

JPL Technical Memorandum 33-666 15



S. . I - N * r qd(x,r) dx
dx w u g n

x

and
Yx v *

c(xg) u I - N * d H (g - g) dx
x

where yec is the distribution function for the condensate defined con-

gruently to y and g may be considered continuous.

Comments

For some types of vapor, the formation of dimers may be important.

Thus it may be desirable to expand the model given in this review to

account for dimer formation kinetics explicitly. Also, for fixed T,

as p - 0 then g - 0 in the liquid drop model. This implies that a

nucleation model for very low pressure should be based on a study of

reaction rate kinetics for low order polymers. This kind of approach

would be specific to the particular vapor of interest and would lead

to considerable complications in the model. Some recent research has

been directed at this problem of molecular kinetics. In Ref. 27, a

computer molecular dynamics simulation is used to compute dimer for-

mation rates for a gas with atoms interacting with the Lennard-Jones

12-6 potential. Investigation of condensation in a CO2 free jet ex-

pansion is reported in Ref. 28. Experimental and theoretical concen-

trations for g = 2 to 5 are shown to have good agreement provided an

appropriate accommodation coefficient is chosen.

It should also be noted that there are situations where drop sizes

become large and growth under continuum gas conditions is important.

An example of this is the experiment in a cloud chamber described in

16 JPL Technical Memorandum 33-666



Ref. 29 where results are compared to various continuum growth theories.

This matter is discussed in detail in Ref. 1.

II. Solutions to the Transient Problem

Conversion of the Nucleation Equation

For high pressure conditions (on the order of an atmosphere) it can

be expected that the time required for the nucleation process to relax

to the steady state limit is small (Refs. 1, 4) and that the transient

behavior can be neglected. On the other hand, at low pressures the

transient behavior may dominate the nucleation process. (The conditions

will be assumed limited to those where g >> 1.) An example of a low

pressure device in which condensation may be important is a metal vapor

laser (Ref. 30). A numerical treatment of the transient problem is

detailed in this part of the report.

The author made a considerable attempt to find an analytical solu-

tion to the nucleation equation; this was unsuccessful. Therefore

reliance was placed on finding a numerical scheme to integrate the

equation. Since the quasi-equilibrium distribution depends exponentially

on the droplet free energy, the actual droplet concentration can be ex-

pected to depend strongly on the variables p, T and g. This is very

awkward from the standpoint of numerical integration and a more well

behaved function is desired. A natural choice is y n N ; the nuclea-

tion equation then takes on the nonlinear form

= b2 (T + F) + a -- (ly+F)
S 2 5

JPL Technical Memorandum 33-666 17



(See note below). To solve this equation numerically, it was decided

to revert to difference-differential equations analogous to the start-

ing binary collision equations but with a fixed difference interval &A.

The backward and forward differences in variable g are mimicked by bias-

ing the centered difference 6 by an amount b:

1 1 -1
6 = (1 b) E ± b - (1 1 b) E

where E and E " are the raising and lowering shifting (or ladder) operators

respectively and b( ) = /1.5/t / At. Let yo denote the value of y at o;

Y at t 0 At. The nucleation equations become for a set of points [t0o

Note: By performing a Taylor series on F(Q) at a proper point ( (p), it

can be shown that a quadratic form well approximates F with absolute

error 4 1 over a range of drop size that is of physical significance.

Correspondingly, the approximate convection velocity in the convection-

diffusion equation for y is linear in t and a linear transformation

' = A(e)t + B(O), o' = 0'(0) yields a simple one dimensional diffusion

equation in the new variables. This equation is seemingly tractable.

However, the new equation possesses a moving boundary condition whose

value and velocity are strong functions of the time variable e' and the

author was unable to generate an analytic solution to the 'simplified'

problem. Moreover, the transformation is bad in that for increasing time

the range of the variables (',o') corresponding to a given region in

(g,t) diminishes rapidly, i.e., it behaves almost as a singular transfor-

mation. It was this kind of circumstance that led to the abandonment

of analytical efforts and adoption of the nonlinear form.
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TO ly+ + 0) - o

+ 6e Yo 6 (yo + Fo)],
-i

Io -1 exp (yo) 6 (o +F) '

where EY = , etc.

To find values at an intermediate point of , quadratic interpolation

is used. For a given total interval of , the number of difference

equations (hence A ) can be adjusted until a desired accuracy is ob-

tained. The set of first order differential equations in 8 (or t) was

solved on a UNIVAC 1108 utilizing a JPL Subroutine Library integrator

SVDQ (Ref. 31).

Comparison with the Numerical Results of Courtney and Clark

Courtney and Clark (Ref. 4) have numerically integrated the binary

collision difference-differential equations for water vapor nucleation

using sets of 50, 100, and 200 equations. Results from the set of

100 (20 ! g 119) are given in figures and tables in the reference.

The pressure and temperature were-assumed constant and the accommodation

coefficient was taken to be unity. On the upper boundary (e.g., g = 120)

the concentration N was assumed null and on the lower boundary (g = 19)
g

the quasi-equilibrium value was used. The initial concentrations were

taken null except for some computations where for g = 20 the quasi-

equilibrium value was used. (Some exceptions to these cited boundary

and initial conditions were also used with minor effects; for details

see Ref. 4) The differences in the initial condition for g = 20 had

This assumption was shown to have negligible effect. for g values differ-

ing by five or more from the highest.
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significant influence on concentrations only for g > g or very small

times (t 4 0.1 psec). As would be expected, this influence was greatest

at lower pressure. Computations were carried out on an IBM 7090 com-

puter. The computer time is not disclosed in the reference, but it is

stated that "... even on a 7090 was burdensome."

Corresponding calculations were performed using the equations of

the previous section. A set of up to 40 equations was used for

10.7 ! 36.3 giving 6a 0.64 . At the upper boundary it was as-

sumed that (E-l)(To + Fo) = - 45.0 (this is nearly equivalent to nulling

the upper boundary concentration) and also 6 was replaced with a back-

ward difference (b -, 1). Essentially null initial conditions were used:

(y) t=0 = - 88.0 . In testing the computer program it was discovered

that a minimum of 20 to 25 equations (A 5 1.28) was necessary to provide

adequate numerical accuracy (error of a few percent in N except for the

largest of g). The accuracy was found to depend quite strongly on the

number of equations (or Ag). For example, using a set of 16 resulted

in as much as order of magnitude error in N for small times. In all
g

calculations, Iy - '(10). A local absolute integration error control

parameter in SVDQ was set at the value 10-4 (actual error is usually an

order of magnitude less, Ref. 31). This was more than adequate, giving

four or more place accuracy for N in the time integration - as ascertained

by other calculations using 10- 5 error control. Some numerical solutions

are compared to those of Courtney and Clark (solid lines) in Figs. 1

through 3. (Except for g 50 in Fig. 3, the Courtney and Clark curves

are for a finite initial concentration at g = 20. The effect of this

is slight - deviations in the ordinate << 1 unit.) Note that vapor
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pressures are given in the captions relative to an atmosphere,

5 2 *
atm = 1.013 x 105 N/m . Agreement is good for g < g . The present

calculations give longer relaxation times for large g, especially at

low pressure, Fig. 3. The transient behavior which is shown in its

initial stage in Fig. 3 is more completely detailed in Fig. 4. A cal-

culation with conditions (T = 233
0K, p/ps = 10.0, W = 12.103 and

p/patm = 1.84 x 10-3) intermediate to those related to Figs. 1-4 gave

results similar in appearance to that shown in Fig. 3. The Courtney

and Clark calculations at these conditions were for a null initial con-

centration at g = 20. Another calculation using 20 equations, T = 293 0K,

P/ps = 5.0, W = 8.35 and p/patm = 0.1156 shows that steady state 
is

reached for these particular conditions in about 0.2 jsec. The computa-

tion time for this case with t 2 psec was 30 seconds. Other computer

times were 16 seconds (Fig. 1, t 2 psec), 14 seconds (Fig. 2, t 2 psec)

and for the conditions of Figs. 3 and 4, 9 seconds to t = 2 psec and

18 seconds to t = 10 psec. The computation of the transient zone is

fast and apparently much quicker than that of Ref. 4.

The fact that the present method yields longer transient relaxation

times for the larger g can probably be attributed to the difficulty with

the binary collision equations in handling numerically the corresponding

small concentrations. For instance, the use of a relative error control

is not desirable with an integrator like SVDQ (Ref. 31); this is probably

true for any integrator. Since the value of Ng for larger g changes

drastically, an absolute error control would lead to inaccuracies and/or

long integration times. Use of the logarithmic variable ' (e,S) eliminates

this difficulty and also permits fewer equations.
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Relaxation in Terms of Universal Parameters

One convenience of the liquid drop model is that nucleation is

described in terms of the dimensionless universal variables: time e,

area , supersaturation function p(9) and surface energy function w(8).

or g can replace either of the functions.) For constant conditions

only two parameters, say g and w, are needed to define the nucleation

process for given compatible initial and boundary conditions. In this

last section of this report, characteristic times for relaxation from

null initial concentrations to (near) steady state are presented.

The boundary and initial conditions used are the same as that

described in the previous section except the lower boundary is taken at

= 4.0 (g ; 4). Forty equations were used in the computations with

0.4 AT 1.1 .In terms of the maximum flux I , a relaxation time
max

OR is defined as that (first) time when I = 0.9 I .max  Imax was found

to be approximately the same as the flux, Iss, resulting from the steady

state limit (Part I). The parameter z will denote the ratio of the

critical to the corresponding quasi-equilibrium concentration at

I = Imax . In the steady state limit, z = .

The calculations were performed for w = 5, 10, 15, 20; g = 10, 20,

30, 45, 60, 80, 100 and for g = 150; w = 5, 10. Figure 5 gives eR vs.

g for the various w. A smooth curve is fitted to the calculated points

in this figure. In order to characterize the transient behavior as

given by the computer solutions, two nominal relaxation process are

defined. The first, to be called "to near steady state," is where

I max is larger than I , but only by a few percent, Iz - 1 4 102, and
max ss

I remains near I upon its attainment for an interval of time
max
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AG > ' (10) (no computations were performed for e > 200). The second,

to be called "non steady state," is where I differs by more than
max

10. from I , z 4 0.4, and I drops after attaining I with
ss max

I 0.98 1 for Aq 4 10. In this second process, the populations
max

for g > g pass through the steady state limit values after the maximum

flux point is reached and continue to relax toward the quasi-equilibrium

distribution. Flux I can become negative. The second process thus

becomes what could be more properly termed a condensation process rather

than a mere nucleation process. Of course, the nucleation model equa-

tion is too simple to accurately portray any such condensation process

where energy considerations are important. Thus there is limited sig-

nificance to results for the second process for 9 >> 0 R , expecially if

* * *
I < 0 (I = I at a time roughly twice R). For 50 4 g 4 100, the

max R

transient behavior is essentially relaxation to near steady state. How-

ever, for w = 5 there was a very slow, or 'adiabatic,' drop in I after

its maximum. For g = 150 and for g = 10, w = 5 the behavior is non

steady state. At g = 150, I is slightly greater than 0.6 I for
max ss

w = 5 and 0.8 I for w = 10. At g = 10, W = 5, I is slightly
ss max

greater than 1.2 1 ss. The transient behavior at other values of para-

meters g and w is intermediate to the nominal near and non steady state

processes. It features a fairly slow drop in I after its maximum with

z 0.45 to 0.48 . For example, at g = 10, W 10 flux I 1.1 I .
max ss

In general, the transient behavior in the calculations discussed in this

section can be described from a practical point of view as being relaxa-

tion to a steady state even though an actual steady state may not be

reached. The curves of Fig. 5 provide a means of rough estimation of
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the limit to the validity of steady state nucleation theory, provided

2/3
only the form Ag = gpkT + g w kT holds.
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Fig. 1. Transient behavior of water droplet concentrations for p/ps = 4. 5 and
T = 263°K. Solid curves are from Ref. 4. Tick marks on right border give
the steady state limit. = 9. 915, g = 85, 20 equations, p/p = 1. 27 x 10 - 2

(see text) atm
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Fig. 2. Transient behavior of water droplet concentrations for p/ps = 5. 1 and
T = 263*K. Solid curves are from Ref. 4. Tick marks at right give steady
state limit. w = 9. 915, g* = 67, 20 equations, p/p = 1.44 x 10-2

atm
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Fig. 3. Transient behavior of water droplet concentrations
for p/ps = 20. 0 and T = 213*K. Solid curves are from
Ref. 4. w = 14. 045, g* = 30, 25 equations,
P/patm = 3. 95 x 10 - 4
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Fig. 4. Transient behavior of water droplet concentrations, same conditions
as Fig. 3. Tick marks at right give the steady state limit up to g = 70
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Fig. 5. Nondimensional nucleation relaxation time 6 vs. critical
droplet size g for various values of the surface energy parameter 0.
(see text)

30 JPL Technical Memorandum 33-666
NASA - JPL - Coml., L.A., Calif.


